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database based on machine learning
Yiwu Sun1*, Zhaoyi He2†, Jie Ren3† and Yifan Wu4† 

Abstract 

Background  Both in-hospital cardiac arrest (IHCA) and out-of-hospital cardiac arrest (OHCA) have higher incidence 
and lower survival rates. Predictors of in-hospital mortality for intensive care unit (ICU) admitted cardiac arrest (CA) 
patients remain unclear.

Methods  The Medical Information Mart for Intensive Care IV (MIMIC-IV) database was used to perform a retrospec-
tive study. Patients meeting the inclusion criteria were identified from the MIMIC-IV database and randomly divided 
into training set (n = 1206, 70%) and validation set (n = 516, 30%). Candidate predictors consisted of the demograph-
ics, comorbidity, vital signs, laboratory test results, scoring systems, and treatment information on the first day of ICU 
admission. Independent risk factors for in-hospital mortality were screened using the least absolute shrinkage and 
selection operator (LASSO) regression model and the extreme gradient boosting (XGBoost) in the training set. Multi-
variate logistic regression analysis was used to build prediction models in training set, and then validated in validation 
set. Discrimination, calibration and clinical utility of these models were compared using the area under the curve 
(AUC) of the receiver operating characteristic (ROC) curves, calibration curves and decision curve analysis (DCA). After 
pairwise comparison, the best performing model was chosen to build a nomogram.

Results  Among the 1722 patients, in-hospital mortality was 53.95%. In both sets, the LASSO, XGBoost,the logistic 
regression(LR) model and the National Early Warning Score 2 (NEWS 2) models showed acceptable discrimination. In 
pairwise comparison, the prediction effectiveness was higher with the LASSO,XGBoost and LR models than the NEWS 
2 model (p < 0.001). The LASSO,XGBoost and LR models also showed good calibration. The LASSO model was chosen 
as our final model for its higher net benefit and wider threshold range. And the LASSO model was presented as the 
nomogram.

Conclusions  The LASSO model enabled good prediction of in-hospital mortality in ICU admission CA patients, which 
may be widely used in clinical decision-making.
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Background
The morbidity and mortality surrounding CA remained a 
global challenge. In the United States, more than 350,000 
people experience an OHCA every year, and about 10.8% 
of them survive to hospital discharge [1]. The in-hospi-
tal survival rate of OHCA patients was 26.4% [2]. IHCA 
occurs in over 290,000 adults each year in the United 
States [3]. The 30 day survival rate of patients with IHCA 
was 27.8%, and the one-year survival rate was 20% [4]. 
Despite increasing attention to CA, the prognosis of 
patients with CA was still unsatisfactory.

Most patients with CA died in acute events. There were 
also some deaths in patients with CA that occur after 
successful resuscitation, which can be attributed to the 
development of post CA syndrome, including neurologi-
cal dysfunction and other types of organ dysfunction. For 
patients with successful resuscitation, they will generally 
be sent to the intensive care unit (ICU) for advanced life 
support treatment. About one third of patients admitted 
to the ICU survive to discharge, but there are considera-
ble differences in the treatment and prognosis of patients 
after CA between different institutions [5–7]. Given the 
high hospital mortality rate, identifying high-risk factors 
and accurately predicting prognosis in the early stages 
of hospitalization may have greater benefits for patients 
with cardiac arrest admitted to the ICU. Although there 
were several models for predicting mortality in hospi-
talized patients with CA available, the accuracy of these 
methods was not satisfactory (the sample size was less 
than 1000 or the C-statistic was not calculated), so they 
had not been widely used [8–10].

Machine learning (ML) belongs to the category of 
artificial intelligence [11]. Different from the traditional 
prediction model that uses selected variables for calcu-
lation, ML can not only easily combine a large number 
of variables with computers to improve the accuracy of 
prediction, but also screen variables by a variety of meth-
ods when selecting variables to improve the accuracy and 
efficiency of the model [12].

By using ML to screen variables and establish predic-
tion models, adverse factors for patients with CA can 
be identified at the early stage of admission to the ICU, 
and corrected as soon as possible to improve the progno-
sis of patients. The purpose of this study was to develop 
and validate a predictive model for in-hospital mortal-
ity of patients with CA admitted to ICU using data from 
MIMIC-IV database.

Materials and methods
Study design and data source
We conducted a retrospective analysis using all the rel-
evant data extracted from the MIMIC-IV database.

The MIMIC-IV database is an open and publicly avail-
able database that contains high-quality data between 
2008 and 2019 constructed by Institutional Review 
Boards of the Massachusetts Institute of Technol-
ogy (MIT, Cambridge, MA, America) and Beth Israel 
Deaconess Medical Center. To access the database, 
we passed the National Institutes of Health Protect-
ing Human Research Participants web-based training 
course and we obtained approval to extract data from 
the MIMIC-IV for research purposes (Certification 
Number: 50778029).

Study patients
Patients with a diagnosis of CA, defined as ICD-9 codes 
of 4275 or ICD-10 codes of I46, I462, I468 and I469. 
Patients were ≥ 18  years old at the time of ICU admis-
sion were included in the study; Patients without an ICU 
record were excluded from the study. The flow chart 
showed the selection of patients into the study (Fig. 1A). 
Patients with a diagnosis of CA were screened and 1722 
adult patients were included in this study.

Data extraction and processing
Demographics, vital signs, laboratory tests, scoring 
systems, relevant treatment information, and oth-
ers were extracted from the MIMIC-IV database using 
structured query language with PostgreSQL (version 
14, www.​postg​resql.​org). The prediction model only 
included the clinical and laboratory variables on the 
first day of ICU admission. If the patient received more 
than one vital sign measurement or laboratory tests on 
the first day of admission, the average values were used 
for subsequent analysis. Comorbidities were identi-
fied using ICD-9/10 code. Based on previous research 
[8, 9, 13, 14], clinical relevance, and general avail-
ability, the following data were extracted: demographic 
characteristics (age at the time of hospital admission, 
sex); vital signs (heart rate (HR), systolic blood pres-
sure (SBP), diastolic blood pressure (DBP), mean blood 
pressure(MBP), respiratory rate(RR), body temperature, 
saturation pulse oxygen (SPO2); comorbidities (hyper-
tension, congestive heart failure(CHF), myocardial 
infarction, diabetes mellitus(DM), and chronic obstruc-
tive pulmonary disease (COPD)) and laboratory vari-
ables (hematocrit(HCT), hemoglobin(HB), platelet 
count, white blood cells(WBC), prothrombin time 
(PT), international normalized ratio (INR), creati-
nine, blood urea nitrogen (BUN), glucose, potassium, 
sodium, calcium, chloride, the anion gap, bicarbonate, 
lactate, hydrogen ion concentration (pH); treatment 
information(ventilation, epinephrine, dopamine); mark-
ing system: sequential organ failure assessment(SOFA), 

http://www.postgresql.org
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simplified acute physiology score III (SAPS III), Glasgow 
coma scale (GCS). The primary outcome of the study 
was in-hospital mortality, defined as the vital status of 
the patient at discharge.

Missing data handling
Variables with missing data are common in the 
MIMIC-IV, and directly eliminating patients with miss-
ing values or analyzing variables with missing values 
will cause bias. we excluded variables with more than 
25% of missing values.

For variables with missing proportion < 5%, the con-
tinuous variables with normal distribution, the miss-
ing values were replaced with the mean for the patient 
group; The skewed distributions with continuous vari-
ables, missing values were replaced with their median 
[15]. Multiple imputation can impute each missing value 
with multiple plausible possible values. This method 
takes into account uncertainty behind the missing value 
and can produce several datasets from which parameters 
can be estimated, and these coefficients are combined to 
give an effective estimate of the coefficients [16–19]. For 

Fig. 1  A Flowchart of patient selection (n = 1722). ICD-9/10, 9/10th revision of the International Classification of Diseases; ICU, intensive care unit; 
MIMIC-IV, Medical Information Mart for Intensive Care IV. B Model development flowchart. LASSO, least absolute shrinkage and selection operator; 
XGBoost, extreme gradient boosting
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variables with missing proportion > 5%, we used multiple 
imputation to handle the data by R software (’mice’ pack-
age). (Missing value details in Supplementary Table 1).

Statistical analysis
Values were presented as total numbers with percentages 
for categorical variables and the means with standard 
deviations (SD) (if normal) or medians with inter quartile 
ranges (IQR) (if non normal) for continuous variables. 
Proportions were compared using χ2 test or Fisher exact 
tests. For all continuous variables, we used a two-sided 
one-way analysis of variance or Wilcoxon rank-sum tests 
when comparing the two groups. P < 0.05 was statistically 
significant.

The flow chart demonstrates the methodology for 
developing the predictive model (Fig.  1B). According to 
previous research [20], the data were divided at random, 
with 70% utilized for training and 30% for validating. 
Table 1 summarized the predictor variables and statistics.

Two ML methods were used to select the most impor-
tant predictors of the in-hospital mortality prediction 
model from the training set. First, we used the LASSO 
method, which was conducted via a continuous shrink-
ing operation and minimizing regression coefficients, in 
order to reduce the likelihood of overfitting. And, LASSO 
can shrink the sum of the absolute value of regression 
coefficients, forcing and producing coefficients that are 
exactly 0 [21, 22]. Variables with non-zero coefficients 
were selected for the next logical regression analysis. This 
enhanced the prediction accuracy and interpretation 
ability of the prediction model, and which was suitable 
for high-dimensional data processing.

Second, we used XGBoost, which was an efficient and 
scalable ML classifier. XGBoost can achieve high predic-
tion accuracy and low computational costs in various 
practical applications [23]. Gradient boosting decision 
tree is the original model of XGBoost, which combines 
multiple decision trees in boosting way. XGBoost used 
the number of boosts, learning rate, subsampling ratio, 
and maximum tree depth to control overfitting and 
enhance the better performance. Moreover, XGBoost 
optimized the target of the function, the size of the tree, 
and the size of the weight through regularization [24].

To investigate the independent risk factors of in-hospi-
tal mortality, the variables screened by two methods were 
used in the training set of univariate logistic regression 
analysis to evaluate the significance of variables. In the 
univariate logistic regression analysis, the variables sig-
nificantly related to the in-hospital mortality will be fur-
ther analyzed by multivariate logistic regression analysis. 
Prediction models were evaluated in terms of discrimina-
tion and calibration. Discrimination was assessed by cal-
culating the area under the curve (AUC) of the receiver 

operating characteristic (ROC) curve and C-statistic test-
ing. Decision curve analysis (DCA) was used to compare 
the clinical net benefit associated with the use of these 
models [25].

The model with the highest AUC and the highest clini-
cal net benefit was identified as the final model, and a 
nomogram was drawn to predict in-hospital mortal-
ity. The nomogram was a visualization of the results of 
the regression equation by calculating the probability of 
occurrence by using some disjoint segments.

The National Early Warning Score 2(NEWS2) was 
a modification of NEWS and a simple aggregate scor-
ing system. In the early stage of disease deterioration, 
the NEWS2 can detect the potential disease changes in 
patients early and provide preventive measures for dis-
ease deterioration, which has important clinical implica-
tions to improve the survival rate of patients with CA in 
ICU [26–30]. Because the final calculation was a score, 
we performed subsequent analysis after translating it 
into a univariate predict model, to analyze C-index and 

Fig. 2  A Cross validation plot for the penalty term. 17 potential 
prediction variables were selected. B A coefficient profile plot was 
produced against the Log Lambda sequence
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estimate differences in the discrimination between the 
models.

Meanwhile, we used a stepwise method to construct a 
prediction model in logical regression(LR model).

All analyses were performed by the statistical software 
packages R version 4.2.2 (http://​www.R-​proje​ct.​org, The 
R Foundation). P < 0.05 (two-sided test) were considered 
statistically significant.

Result
Baseline characteristics
As shown in Fig. 1A, a total of 1722 patients diagnosed as 
CA were included in our study. According to the research 
method of the previous study, we randomly divided all 

patients into training set (1206 people, 70%) and valida-
tion group (516 people, 30%). In the whole study popu-
lation, the in-hospital mortality rate of CA patients was 
53.95% (793 survivors and 929 non-survivors). Table  1 
showed the comparison of demographics and variables 
between the training set and the validation set, as well 
as the comparison of dead patients and survivors dur-
ing hospitalization. SBP, DBP, MBP values were lower in 
the training set. The proportion of dopamine use and in-
hospital mortality were lower in the validation set. There 
were no significant differences in other selected variables 
between the training set and validation set. Patients who 
died also had lower SBP, DBP, MBP, temperature, SPO2, 
HCT, HB, platelet, bicarbonate, calcium, pH, GCS score, 

Fig. 3  Predictor variables selection. A Predictor variables selected by LASSO. B Importance ranking of the predictor variables selected by XGBoost 
algorithm. BUN, blood urea nitrogen; CHF, congestive heart failure; DBP, diastolic blood pressure; GCS, Glasgow coma scale; HB, hemoglobin; HR, 
heart rate; LASSO, least absolute shrinkage and selection operator; MBP, mean blood pressure; PT, prothrombin time; RR, respiratory rate; SAPS III, 
simplified acute physiology score; SPO2, saturation pulse oxygen; WBC, white blood cells; XGBoost, extreme gradient boosting

http://www.R-project.org
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Table 2  Univariate and multivariate logistic regression analyze variables screened by least absolute shrinkage and selection operator 
regression in the training set

BUN Blood urea nitrogen, GCS Glasgow coma scale, MBP Mean blood pressure, PT Prothrombin time, SAPS III Simplified acute physiology score, SPO2 Saturation pulse 
oxygen. P < 0.05 was statistically significant

Univariate analysis Multivariate analysis

OR 95%CI P OR 95%CI

Age (years old) 1.01 1.01 to 1.02  < 0.001 1.01 1.00 to 1.02 0.013

Congestive heart failure 0.79 0.61 to 1.04 0.0928 NA

SAPS III 1.02 1.02 to 1.03  < 0.0001 1.01 1.00 to 1.01 0.002

Heart rate (beats/minute) 1.03 1.02 to 1.03  < 0.001 1.02 1.01 to 1.03  < 0.001

MBP (mmHg) 0.97 0.96 to 0.98  < 0.001 0.99 0.98 to 1.00 0.049

Respiratory rate (beats/minute) 1.13 1.09 to 1.16  < 0.001 1.05 1.01 to 1.09 0.007

Temperature (°C) 0.72 0.64 to 0.80  < 0.001 0.76 0.65 to 0.87  < 0.001

SPO2 (%) 0.86 0.82 to 0.90  < 0.001 0.93 0.88 to 0.97 0.002

GCS 0.85 0.80 to 0.90  < 0.001 0.86 0.80 to 0.91  < 0.001

Man (n, %) 0.73 0.58 to 0.92 0.0084 0.76 0.57 to 1.00 0.048

Hemoglobin (g/dL) 0.89 0.85 to 0.94  < 0.001 0.95 0.89 to 1.01 0.100

Anion gap (mmol/L) 1.14 1.11 to 1.18  < 0.001 1.02 0.97 to 1.06 0.466

Bicarbonate (mmol/L) 0.89 0.86 to 0.91  < 0.001 0.95 0.92 to 0.98 0.003

BUN (mg/dL) 1.02 1.01 to 1.02  < 0.001 1.01 1.00 to 1.01 0.087

Sodium (mmol/L) 1.02 1.00 to 1.04 0.0702 NA

PT (s) 1.05 1.03 to 1.07  < 0.001 1.01 1.00 to 1.03 0.049

Lactate (mmol/L) 1.25 1.19 to 1.31  < 0.001 1.06 0.99 to 1.13 0.103

Table 3  Univariate and multivariate logistic regression analyze variables screened by extreme gradient boosting in the training set

DBP Diastolic blood pressure, GCS Glasgow coma scale, MBP Mean blood pressure, SAPS III Simplified acute physiology score, SPO2 Saturation pulse oxygen, WBC White 
blood cells. P < 0.05 was statistically significant

Univariate analysis Multivariate analysis

OR 95%CI P OR 95%CI P

SAPS III 1.02 1.02 to 1.03  < 0.001 1.01 1.00 to 1.02 0

SPO2 (%) 0.86 0.82 to 0.90  < 0.001 0.92 0.88 to 0.96 0.001

Age (years old) 1.01 1.01 to 1.02  < 0.001 1.01 1.00 to 1.02 0.005

Respiratory rate (beats/minute) 1.13 1.09 to 1.16  < 0.001 1.05 1.01 to 1.09 0.009

Lactate (mmol/L) 1.25 1.19 to1.31  < 0.001 1.05 0.99 to 1.12 0.096

Bicarbonate (mmol/L) 0.89 0.86 to 0.91  < 0.001 0.96 0.93 to 0.99 0.023

Heart rate (beats/minute) 1.03 1.02 to 1.03  < 0.001 1.02 1.01 to 1.03  < 0.001

Platelet (109 /L) 1.00 1.00 to 1.00 0.1729 NA

Temperature (°C) 0.72 0.64 to 0.80  < 0.001 0.77 0.66 to 0.88  < 0.001

Calcium (mmol/L) 0.90 0.80 to 0.99 0.0347 0.93 0.82 to 1.07 0.308

GCS (mmol/L) 0.85 0.80 to 0.90  < 0.001 0.86 0.81 to 0.92  < 0.001

Potassium (mmol/L) 1.22 1.04 to 1.43 0.0157 0.93 0.76 to 1.13 0.441

Anion gap (mmol/L) 1.14 1.11 to 1.18  < 0.001 1.04 1.00 to 1.08 0.051

MBP (mmHg) 0.97 0.96 to 0.98  < 0.001 0.98 0.96 to 1.01 0.217

Hemoglobin (g/dL) 0.89 0.85 to 0.94  < 0.001 0.92 0.86 to 0.98 0.008

WBC (109 /L) 1.02 1.01 to 1.04 0.0022 1.00 0.99 to 1.02 0.665

DBP (mmHg) 0.98 0.97 to 0.99  < 0.001 1.00 0.98 to 1.03 0.903



Page 9 of 17Sun et al. BMC Anesthesiology          (2023) 23:178 	

the proportion of man, CHF and myocardial infarction. 
However, age, SOFA score and SAPS III score, epineph-
rine use, dopamine use, HR, RR, WBC, anion gap, BUN, 
creatinine, glucose, sodium, potassium, INR, PT and lac-
tate levels in patients who died during their hospital stay 
were significantly increased. There was no significant dif-
ference in terms of whether they had DM, hypertension, 
ventilation and chloride levels, between the surviving and 
non-surviving patients.

Selected variables
In the training set, we conducted the regularization pro-
cess of LASSO. The binomial deviance was computed for 
the test data as measures of the predictive performance 
of the fitted models. The binomial deviance curve was 
plotted versus log (λ) using tenfold cross-validation via 
minimum criteria, where λ was a tuning hyperparameter. 
The dotted vertical lines were drawn at optimal values 
by using the minimum criteria and within one standard 
error range of the minimum criteria. We chose the lat-
ter criteria (λ = 0.01944) as it results in stricter penalty 
allowing us to reduce the number of covariates even fur-
ther than the minimum criteria (λ = 0.00332) (Fig. 2A, B). 
Finally, 17 nonzero coefficients were resulted in LASSO 
regression (Fig. 3A). Meanwhile, XGboost was also used 
to analyze the patients who died in the training set, 
ranked the predictive importance of all included vari-
ables, and selected the top 17 variables (Fig. 3B).

Model development
In the training set, 17 variables respectively screened 
by LASSO and XGboost were used to conduct univari-
ate logistic regression with the in-hospital mortality, 
and variables with statistically significance in univariate 
logistic regression were used to conduct multivariate 
logistic regression. Tables 2 and 3 showed the variables 
selected in the univariate and multivariate analysis by 
LASSO and XGBoost. Among the variables screened 
using LASSO, multivariate logistic regression identified 

Fig. 4  The discrimination and calibration performance of LASSO 
model. Plot (A) showed the ROC curves of the LASSO model in the 
training set and validation set, respectively (AUC = 0.7879 versus 
0.7994). Calibration curves of the LASSO model in the training set 
(B) and validation set (C). Calibration curves depicted the calibration 
of the LASSO model in terms of the agreement between the 
predicted risk of in-hospital mortality and observed in-hospital 
mortality. The 45° dotted line represents a perfect prediction, and 
the blue lines represent the predictive performance of the LASSO 
model. The closer the violet line fit is to the ideal line, the better the 
predictive accuracy of the LASSO model is. AUC, area under the curve; 
LASSO, least absolute shrinkage and selection operator; ROC, receiver 
operating characteristic
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age, SAPS III, HR, MBP, RR, temperature, SPO2, GCS, 
man, bicarbonate, PT as the most significant mortal-
ity risk predictors; Among the XGBoost selected vari-
ables, SAPS III, RR, bicarbonate, SPO2, temperature, 
age, HR, GCS, HB as the most significant mortality risk 
predictors.

We established an in-hospital mortality prediction algo-
rithm using LASSO selected variables as follows: log odds of 
mortality = 18.746877 + 0.013344 × age + 0.010997 × SAPS III +  
0.019006 × HR- 0.017839 × MBP + 0.048912 × RR- 0.286264 × 
 temperature- 0.080727 × SPO2- 0.142085 × GCS- 0.258837 × 
 man- 0.064604 × bicarbonate + 0.021723 × PT.

The variance inflation factors for these variables 
were 1.1, 1.2, 1.3, 1.1, 1.3, 1.2, 1.1, 1.0, 1.0, 1.1 and 1.0, 
respectively.

Based on XGBoost, the selected variables for the in-hospi-
tal mortality prediction algorithm were as follows: log odds of 
mortality = 20.258476 + 0.011845 × SAPS III + 0.052959 × RR- 
0.071588 × bicarbonate- 0.099384 × SPO2- 0.279351 × tem-
perature + 0.013794 × age + 0.018419 × HR- 0.138026 × GCS- 
0.102837 × HB.

The variance inflation factors for these variables were 
1.2, 1.3, 1.1, 1.1, 1.2, 1.1, 1.3, 1.0 and 1.1, respectively.

Based on stepwise logistic regression, the selected variables 
for the in-hospital mortality prediction algorithm were as 
follows: log odds of mortality = 16.287329 + 0.013572 × age- 
0.447131 × CHF + 0.010371 × SAPSIII + 0.018552 × HR- 
0.016852 × MBP + 0.049526 × RR- 0.286100 × temperature-  
0.086035 × SPO2- 0.135393 × GCS- 0.530986 × COPD + 0.137646 ×  
HCT- 0.461777 × HB- 0.067713 × bicarbonate + 0.007738 × 
 BUN + 0.025168 × sodium.

The variance inflation factors for these variables were 
1.2, 1.2, 1.3, 1.3, 1.2, 1.3, 1.2, 1.1, 1.0, 1.1, 13.4, 13.8, 1.2, 
1.2 and 1.1, respectively.

Model validation
The discrimination and calibration of the LASSO model 
and the XGBoost model in the training set and validation 
set were shown in Figs. 4A-C and 5A-C, respectively. In 
the training set, the AUC of LASSO model and XGBoost 
model were 0.7879 (0.7627–0.8132) and 0.7854 (0.7599–
0.8109) respectively. In the validation set, the AUC of 
LASSO model and XGBoost model were 0.7994 (0.7618–
0.8369) and 0.7941 (0.7560–0.8321), respectively. As 

Fig. 5  The discrimination and calibration performance of 
the XGBoost model. Plot (A) showed the ROC curves of the 
XGBoost model in the training set and validation set, respectively 
(AUC = 0.7854 versus 0.7941). Calibration curves of the XGBoost 
model in the training set (B) and validation set (C). AUC, area under 
the curve; ROC, receiver operating characteristic. XGBoost, extreme 
gradient boosting
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shown in Figs. 4B, C, and 5B, C, in the calibration curves 
of the training set and the validation set of the same 
model, it can be seen that the prediction models had a 
strong concordance performance in both sets.

The NEWS 2 based on RR, SPO2, SBP, pulse rate, 
level of consciousness or new confusion, temperature to 
predict the risk of in-hospital mortality for patients in 
ICU with CA. We calculated the NEWS 2 for all study 
patients. The ROC curve and calibration curve of NEWS 
2 in the training set and verification set were shown in 
Fig.  6A-C. The AUC of the training set and verification 
set were 0.6944 (0.6651–0.7237) and 0.7030 (0.6588–
0.7472), respectively.

The ROC curve and calibration curve of LR model 
in the training set and verification set were shown in 
Fig.  7A-C. The AUC of the training set and verification 
set were 0.7992 (0.7746–0.8238) and 0.7970 (0.7592–
0.8348), respectively.

The DCA for the LASSO model, the XGBoost model, 
LR model and the NEWS 2 model were presented in 
Fig. 8A. It can be seen that when the threshold probabil-
ity was 0.18 to 0.86 in the four models, the models added 
more net benefit than the ‘All’ or ‘None’ scheme.

Model comparison
We compared the AUC of the LASSO, XGBoost, 
LRand NEWS 2 model in our total study population 
to assess the predictive effectiveness of the four mod-
els. Figure  8B showed that the AUC for the LASSO 
model, XGBoost model, LR model and NEWS 2 
model were 0.7912(0.7703–0.8122), 0.7892(0.7681–
0.8103), 0.7979(0.7773–0.8185) and 0.6969 (0.6725–
0.7212), respectively, which were confirmed to be 
0.7873, 0.7845, 0.7921 and 0.6969 via bootstrapping 
validation(repeat = 1000). By comparing the AUC 
values, the predictive effectiveness of the LASSO 
model,the XGBoost model and LR model were both 
significantly better than the NEWS 2 model (p < 0.001). 
And there was no statistical significance difference 
between the LASSO model, the XGBoost model and LR 
model (p > 0.05) (Table 4).

In the LASSO model, 11 variables were included, and 
there were 9 variables in the XGBoost model, while 
there were 15 variables in the LR model. LR model had 
more variables and a smaller threshold range compared 

Fig. 6  The discrimination and calibration performance of NEWS 
2 model. Plot (A) showed the ROC curves of the NEWS 2 model in 
the training set and validation set, respectively (AUC = 0.6944 versus 
0.7030). Calibration curves of the NEWS 2 model in the training set 
(B) and validation set (C). AUC, area under the curve; NEWS 2, the 
national early warning score 2; ROC, receiver operating characteristic
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to XGboost model and LASSO model. Although the 
XGboost model was more concise, the net benefit of 
the LASSO model was higher than the XGBoost model 
within the threshold range of 0.6–1.0. We believed that 
higher net benefit was more beneficial for patients with 
CA. Therefore, we chose the LASSO model as the final 
model, and represented by the nomograph in Fig.  9. 
The nomograph used some parallel lines with scales to 
estimate the probability of occurrence of each risk fac-
tor. The score of each risk factor can be calculated, and 
then the probability of occurrence to the total score of all 
risk factors can be calculated, which is the probability of 
occurrence of this event.

Discussion
CA is a major public health event with a high mortality 
rate. Early and accurate prediction of in-hospital mortal-
ity of patients with CA can give clinicians more time to 
provide individualized treatment strategies, and play an 
important role in rational planning of medical resources 
and personnel scheduling. Many studies had analyzed 
the short-term and long-term survival rates of OHCA 
and IHCA respectively. Recently, more and more stud-
ies established prediction models for in-hospital patients 
with CA [31–33].

With the advancement of electronic medical records 
and artificial intelligence, ML algorithms have become 
more widely utilized in individualized medicine to assist 
clinical decision-making. Therefore, we used the data 
from MIMIC-IV database to screen the independent risk 
factors of in-hospital mortality with CA patients by ML 
algorithm, and then obtained a predictive nomograph by 
logistic regression analysis.

In our study, the in-hospital mortality is 52.4%, which 
is significantly lower than other study population [2, 4, 
34]. The lower mortality rate may be related to the small 
sample size and the location of CA. The age, HR, RR, 
bicarbonate, SPO2, temperature, SAPS III score and GCS 
score were included in the XGBoost and LASSO multi-
ple regression equations. The HB were included in the 
XGBoost multiple regression equation; Meanwhile, the 
man, PT and MBP were included in the LASSO multiple 
regression equation. Consistent with previous studies, 
our study also took age, man, HR, SPO2, and lower MBP 
values as independent predictors [32, 35, 36].

Fig. 7  The discrimination and calibration performance of LR model. 
Plot (A) showed the ROC curves of the LR model in the training 
set and validation set, respectively (AUC = 0.7992 versus 0.7970). 
Calibration curves of the LR model in the training set (B) and 
validation set (C). AUC, area under the curve; LR, logistic regression; 
ROC, receiver operating characteristic
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After CA, the occurrence of tissue ischemia and 
hypoxia will lead to the decrease of pH value and increase 
of lactate value. In OHCA patients, the pH value was 
related to the neurological state of the patient at dis-
charge, which may help predict the adverse neurological 
state of the patient at discharge [37, 38]. However, some 
studies had shown that dynamic monitoring of pH may 
be more meaningful for the prognosis of the nervous sys-
tem [39]. Moreover, the prognosis of the nervous system 
was not consistent with the in-hospital survival rate. Lac-
tate was also an indicator that can affect the prognosis 
of CA patients [40]. However, some studies had pointed 
out that in addition to the absolute value of lactate, the 
change rate of early lactate value also had important 
prognostic significance [41, 42]. In our study, pH and 
lactate were not included in the final model due to the 
inconsistent sample collection time of all patients and the 
possible bias caused by the longtime span of the database.

Several prognostic scoring systems had been developed 
to predict the in-hospital mortality of ICU patients [43]. 
SAPS III was a more modern mortality prediction model 
that used a larger cohort that included the first from out-
side North America and Europe and utilized new com-
puter-intensive analysis methods [44]. One study showed 
that the SAPS III did not predict mortality in patients 
admitted to ICU after CA [45]. SAPS III was also con-
sidered as a reliable, simple and easy to use prognostic 
model in clinical practice [46]. In our study, SAPS III was 
included in the final model as an independent predictor.

Targeted temperature management is the sole inter-
vention for improving neurological outcomes in the post 
return of spontaneous circulation phase of care, which 
has been considered a standard of care treatment for over 
almost two decades and has been included in the Inter-
national Post-Cardiac Arrest Guidelines [47, 48]. How-
ever, in our study, the effect of temperature was opposite 
to targeted temperature management, which may be 
because low body temperature was due to poor periph-
eral circulation, rather than hypothermia treatment.

During CA, metabolic acidosis is caused by hypoxia-
induced anaerobic metabolism and decreased metabolic 
acid excretion due to renal insufficiency [49]. The lower 
the bicarbonate, the more serious the metabolic acidosis. 
In our study, bicarbonate was included in our model as 
an independent predictor.

PT shows the status of exogenous coagulation system. 
PT prolongation was prevalent in critically ill patients 
and was independently associated with higher ICU mor-
tality [50]. In other studies, prolonged PT was also asso-
ciated with increased mortality [51, 52]. In our study, PT 
was an independent predictor of in-hospital mortality in 
patients with CA.

NEWS 2 has clinically significant in predicting the 
incidence of CA within 24  h, ICU occupancy and 
mortality [53, 54]. Compared with the NEWS 2 model, 
XGBoost model,LASSO model and LR model showed 
the advantages of prediction effect in our study. The 
three models showed good discrimination and cali-
bration abilities in the training set and validation set. 
To obtain a wider threshold range and a greater net 
benefit, we selected the LASSO model to develop our 
predict nomogram.

A lot of variables were reported to correlate with mor-
tality in CA patients, such as hypertension, DM, the use 
of vasopressor [13, 40, 55, 56]. Nevertheless, our study 
showed that hypertension, DM and the use of epineph-
rine and dopamine were not predictors of in-hospital 
mortality of ICU-admitted CA patients, which may be 
attributed to our relatively small sample size, and the dif-
ference in amount and duration of use vasopressors.

Our study had several limitations. Firstly, as this was 
a retrospective study, we were unable to avoid selection 
bias. Secondly, as a single center study with the earliest 
cases from almost 20  years ago, the treatment and care 
of CA had been inconsistent with current standards, 
which requires a multicenter registration and prospec-
tive study to verify. Thirdly, our cases were all adult CA 
patients in ICU. Whether the results of this study can be 
applied to other populations needs further research on 
more patients in different clinical environments to con-
firm our results. Fourthly, limited by the contents of the 
MIMIC-IV database, incomplete recorded data was not 
included in the analysis, moreover, we cannot distinguish 
the source of patients in this study was IHCA or OHCA. 
Fifth, due to the small number of patients with CA, in 
order to ensure the accuracy of the model, we used sur-
vival rate as an outcome indicator rather than neurologi-
cal prognosis. In the future, it may be more meaningful 
to study neurological prognosis as an outcome when the 
sample size is sufficient.

(See figure on next page.)
Fig. 8  A Decision curve analysis for LASSO model, XGBoost model, LR model and NEWS 2 model. The y-axis measures the net benefit. The red 
line represents the LASSO model. The green line represents the XGBoost model. The yellow line represents the LR model. The blue line represents 
the NEWS 2 model. The grey line represents the assumption that all patients die in the hospital. The black line represents the assumption that no 
patients die in the hospital. B The comparison of ROC curves for LASSO model, XGBoost model, LR model and NEWS 2 model. LASSO, least absolute 
shrinkage and selection operator; LR, logistic regression; NEWS 2, the national early warning score 2; ROC, receiver operating characteristic; XGBoost, 
extreme gradient boosting
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Fig. 8  (See legend on previous page.)
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Conclusion
We developed a predictive nomogram for in-hospital 
mortality of CA patients in ICU, which included variables 
that can be routinely collected during hospitalization in 
ICU. With a high AUC of 0.7912 (95% CI 0.7703–0.8122), 
a wide net benefit threshold range (0.2–1.0) and high net 
benefit, this nomogram may be widely used in clinical 
decision-making.
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